中位数和众数教学反思
身为一名到岗不久的人民教师,课堂教学是重要的工作之一,借助教学反思我们可以学习到很多讲课技巧,那么问题来了,教学反思应该怎么写?下面是小编收集整理的中位数和众数教学反思,欢迎阅读,希望大家能够喜欢。
中位数和众数教学反思1新数学课程标准强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式。所以本节课主要以“先学后教”、“小组合作”为主线开展课堂教学。
“中位数和众数”安排在“算数平均和加权平均数”之后的一节概念与方法教学课,为“平均数、中位数与众数的选用”奠定基础。本节课从实际生活中的气温引出已学过的平均数,再过度到中位数与众数?由解决问题的过程得出概念、方法,再由一般情况到特殊情况,如:奇数个数据到偶数个数据的中位数的寻找方法,一组数据中有一个众数到有多个众数,没有众数的特殊请况;最后由方法到应用。在练习题目的设置上,有代表性、有层次性。由概念判断到较易的找中位数和众数,再到有难度的变式练习。其中,在课堂小结时,由学生表述当堂所学,教师给予肯定,让学生体验掌握知识的成就感。
但是,在备课时,对备学生这块准备不足,课堂的应变能力有待提高,各环节的时间掌控也不甚理想,以致最后有两道题未能在课堂上完成,而留着课下作业。课堂教学的目标应该是,当堂内容,当堂消化,尽量少留或不留课下作业,为学生减负。
不尽之处,望各位领导、同仁,不吝赐教。
中位数和众数教学反思2本次公开课我讲了五年级中的《中位数和众数》一课,在讲完课以后学校领导以及老师们给我提出了宝贵而又中肯的建议,使我收获甚多,之后我进行了细致的研究与分析,并总结出了以下需要提高和改善的地方:
一、细致研究与分析教参
王校在我讲完公开课之后,她细读了教参,并且提出了教参中需要比较出平均数、众数、中位数这三者的异同,而我的教案中缺少了比较的方面,她告诉我一定要深刻细致的研究教参,这样才可以精心上好每一节课。我回去重新研究了这节课,确实是我忽略了这一点,现在想想也许就是这一点可能会误导好多学生。造成的后果该多严重呀!
二、导入
在这节课中,我是以踢毽的两组数据导入的,之后让学生找平均数、众数、中位数这三种统计量,以这样的方式导入无法区分这三者的异同,孩子们或者会想为什么要用到中位数和众数呀,用平均数不就已经可以反映出两组学生踢毽的水平了吗?王校给我提出了最朴实的建议:可以以教材中的例子入手,刚开始有两组数据,算出的平均数都是5,因此无法比较两组到底谁植的好,因此引出中位数和众数的概念,可能孩子更容易理解其用意。本节课我导入的时间过于长了,在“十项技能大赛”直接就应该说出来,不应该在此处浪费过多的时间和精力。
三、中位数、众数、平均数的区别
王校提出应该让学生明白在什么情况下去用这三种统计量,比如:①在这组数据模糊不清的时候,此时无法用平均数去比较,则这时用中位数比较能反映两组数据的异同。其次应该让学生明确中位数、众数、平均数的优势、劣势是什么,中位数的优势是只和中间位置的数据有关,极端值不影响中位数。中位数的劣势是:只能反映中间数的特点,反映数据的局部性。众数的优势是:明显趋势。
平均数的优势能反映出整体的趋势,但如果数据不清楚时则无法求出。还有在引出中位数的时候,王校建议我可以直观的借助孩子的资源,让一列学生站起来,直接让孩子去找中位数,那样不更直观和清晰吗?还有在讲众数的时候,如果这组数据是这样的:12、3、4、5、6、87可以明显的看出这组数没有众数,在本节课中我没有涉及到,所以在有些情况是没有众数的。还应该着重强调中位数、平均数只能有一个,而众数可能有一个或者多个,也可能一个也没有。
四、细节注意
1、上课时我的头发由于过长所以对教学有严重的影响,我一定会注意,并及时改正。
2、讲到中位数这个难点的时候我给学生的空间太小了,应该花费更多的时间去处理这块知识点,应该把学生的排列结果在投影中展示出来,这样才能给学生加深记忆并强调做题方法。
3、到生活中“均码”的概念时,应该先让学生自己说说,然后再给出相关概念的陈述。
4、书:主要呈现中位数的两种特殊情况就可以了,多余的东西就删掉了。
5、语速:新教师都会说话比较快,我一定要克服这个致命的缺点把重难点突出来。
这次公开课并没有因此而结束,听了王校长和老师们的建议真的让我收获好多,并且更加懂得了,要想上一节好课需要下多么大的功夫。我想我会以此为契机,在今后的教学中更加严格要求自己,认真备好每一节课,使之行之有效的上好每一节课,成为学生爱戴的好老师。
中位数和众数教学反思3今天用多媒体上了《中位数和众数》,虽然没有什么大问题和疑问,但还是有一些知识需要整理和补充。以下是我在教学过后从网络上学习的内容,虽不是我所写,但是却是我所想。中位数和众数是根据《数学课标》的要求新增加的教学内容。在平均数不能有效地反映出一组数据的基本特点时,往往选用众数或中位数来表达数据的特点。
平均数、中位数、众数这三个统计量虽然都代表一组数据典型水平或集中趋势的量,但是它们反映数据的特征有所不同。
下面谈谈这三种统计量之间的异同点:
一、平均数、中位数、众数的相同点.
平均数、众数和中位数都叫统计量,它们在统计中,有着广泛的应用。平均数、中位数、众数都是描述数据的集中趋势的“特征数”,平均数、中位数和众数从不同侧面给我们提供了同一组数据的面貌,平均数和中位数都有单位(众数如果表示的是数时,也有单位);它们的单位和本组数据的单位相同。三者都可以作为一组数据的代表。
二、平均数、中位数、众数的不同点
(一)三者的定义及优缺点不同。
1.平均数。
①平均数的定义及特点。
小学数学里所讲的平均数一般是指算术平均数,也就是一组数据的和除以这组数据的个数所得的商。
在统计中算术平均数常用于表示统计对象的一般水平,它是描述数据集中程度的一个统计量。既可以用它来反映一组数据的一般情况(用平均数表示一组数据的情况,有直观、简明的特点),也可以用它进行不同组数据的比较,可以看出组与组之间的差别。平均数反映一组数据的平均水平,与这组数据中的每个数都有关系;用平均数作为一组数据的代表,比较可靠和稳定,它与这组数据中的每一个数都有关系,所有的数据都参加运算,对这些数据所包含的信息的反映最为充分,因而应用最为广泛,特别是在进行统计推断时有重要作用,但计算较繁琐,并且易受极端数据的影响。在平均数中有一种去尾平均数,它是将一组数据的其中一个最大值和一个最小值 ……此处隐藏12180个字……系。
3、教师呈现给学生的自学指导,由浅入深,层层递进,扣紧教材。学生学起来顺其自然,水到渠成。
4、汇报交流时抓住重点,突破难点,导在关键点,决不含糊,并让学生举例加深理解和辨析。
5、练习设计全面有梯度,既能抓住本课的知识点的普遍性,又挖掘出在解决问题时可能出现的特殊性,同时又考虑到数学与生活的联系,体现出数学源于生活又服务与生活。
遗憾之处再所难免,在巩固练习环节的第二关时,为了让每位学生都会找“平均数、中位数、众数”,本环节给学生足够的时间,以致于最后的一道题时间仓促,留下了遗憾。或许教学是一门永远缺憾的艺术,只有缺憾才能不断挑战自我,创造出自我的课堂风格。
中位数和众数教学反思14《中位数与众数》脑子里最直接的反映是:什么是中位数,有什么应用价值。什么是中位数比较好理解,但是,为什么学习中位数呢?平时生活中,我们用得最广的是平均数,对平均数的体验也较多,要学生舍弃平均数选用中位数体验的过程就需要相当地清晰。因此,我把课的难点定位为:理解中位数的意义,即学习中位数的必要性;教学的重点是理解中位数的意义,掌握求中位数的方法。然而众数的概念更好理解一些。
一、创设情境,引发认知冲突。
“问题是数学的心脏”,有了问题才会思索,有了问题才可以引发学生认识上的冲突。一开课,我提供某公司技术部门有总工程师1人,工程师1人,技术员6人,见习技术员1人;现需招聘技术员1人,小范前来应征赵总经理说:"我们这里的报酬不错,平均工资是每月20xx元,你在这里好好干!" "小范在公司工作了一周后,找到总经理说:"你欺骗了我,我己问过其他技术员,没有一个技术员的工资超过20xx元,平均工资怎么可能是每月20xx元呢?"总经理说:"平均工资确实是每月20xx元。"下表是该部门月工资报表:
却有疑问了。同学们经理是否欺骗了小范?
问题(1): 结合表中的数据,计算该公司技术部门员工的月平均工资是多少? 问题(2): 平均月工资能否客观地反映一般技术员工的实际收入?。
二、在分析讨论中促进学生对概念的理解。
中位数和众数的概念,我没有直接给出,主要让学生通过小组的合作学习,交流讨论,认识到不按顺序排列,处于中间的数是不确定,而从小到大或从大到小排列后中位数是确定,从而理解求中位数时,数据应该排序。
通过学生观察、分析、讨论、在共享集体思维成果的基础上逐步建构出这两个概念,这样做使学生逐步体会到这两个统计量都反映一组数据的集中趋势。
在教学中,对学生的各种回答给予肯定,各人从不同的角度理解会得到不同的结论。由于教材出现的一组数据的个数是奇数,直接找中间的数作为中位数。“老师,如果一组数据的个数是偶数,该怎么办?”初二三班的张晋硕和四班的孙凯旋问道。多好的问题,这一问题引发起其他学生的思考。自学,看书上有没有教我们。这时有学生读出教材的方法:当一组数据的个数是偶数时,中位数取中间两个数的平均数。根据这两位学生的提问,我立即与学生一起构建求中位数的思维,帮助学生梳理求中位数的方法与步骤。
“中位数”中“中位”是指位置居于中间,即某个数据在按照大小顺序排列的一组数据中,位置处于最中间的数。“众数”中“众”即多,也就是某个数据在一组数据中出现次数最多。形象语言的描述让学生更易理解、掌握这两个概念。
三、在学以致用中体会区别
练习时,在同一具体问题中分别求平均数,中位数,众数,目的是为了比较三个量在描述一组数据集中趋势时的不同角度,有助于了解三个概念之间的联系与区别。
通过这节课的学习,我感到学生的参与交流、探索知识。需要强调的是:学生有自己的看法和意见,教师不可一味的否定学生。教师要关注学生思考问题的过程,千万不要代替学生思考,更不可强加给学生固定的思维模式。
中位数和众数教学反思15《中位数与众数》脑子里最直接的反映是:什么是中位数,有什么应用价值,中位数和众数教学反思。什么是中位数比较好理解,但是,为什么学习中位数呢?
平时生活中,我们用得最广的是平均数,对平均数的体验也较多,要学生舍弃平均数选用中位数体验的过程就需要相当地清晰。因此,我把课的难点定位为:理解中位数的意义,即学习中位数的必要性;教学的重点是理解中位数的意义,掌握求中位数的方法。然而众数的概念更好理解一些。
一、创设情境,引发认知冲突。
“问题是数学的心脏”,有了问题才会思索,有了问题才可以引发学生认识上的冲突。一开课,我提供某公司技术部门有总工程师1人,工程师1人,技术员6人,见习技术员1人;现需招聘技术员1人,小范前来应征赵总经理说:"我们这里的报酬不错,平均工资是每月20xx元,你在这里好好干!"
"小范在公司工作了一周后,找到总经理说:"你欺骗了我,我己问过其他技术员,没有一个技术员的工资超过20xx元,平均工资怎么可能是每月20xx元呢?"总经理说:"平均工资确实是每月20xx元。"问题(1): 结合表中的数据,计算该公司技术部门员工的月平均工资是多少?
问题(2): 平均月工资能否客观地反映一般技术员工的实际收入?。
二、在分析讨论中促进学生对概念的理解,教学反思《中位数和众数教学反思》。
中位数和众数的概念,我没有直接给出,主要让学生通过小组的合作学习,交流讨论,认识到不按顺序排列,处于中间的数是不确定,而从小到大或从大到小排列后中位数是确定,从而理解求中位数时,数据应该排序。
通过学生观察、分析、讨论、在共享集体思维成果的基础上逐步建构出这两个概念,这样做使学生逐步体会到这两个统计量都反映一组数据的集中趋势。
在教学中,对学生的各种回答给予肯定,各人从不同的角度理解会得到不同的结论。由于教材出现的一组数据的个数是奇数,直接找中间的数作为中位数。“老师,如果一组数据的个数是偶数,该怎么办?”初二三班的张晋硕和四班的孙凯旋问道。多好的问题,这一问题引发起其他学生的思考。自学,看书上有没有教我们。这时有学生读出教材的方法:当一组数据的个数是偶数时,中位数取中间两个数的平均数。根据这两位学生的提问,我立即与学生一起构建求中位数的思维,帮助学生梳理求中位数的方法与步骤。
“中位数”中“中位”是指位置居于中间,即某个数据在按照大小顺序排列的一组数据中,位置处于最中间的数。“众数”中“众”即多,也就是某个数据在一组数据中出现次数最多。形象语言的描述让学生更易理解、掌握这两个概念。
三、在学以致用中体会区别
练习时,在同一具体问题中分别求平均数,中位数,众数,目的是为了比较三个量在描述一组数据集中趋势时的不同角度,有助于了解三个概念之间的联系与区别。
通过这节课的学习,我感到学生的参与交流、探索知识。需要强调的是:学生有自己的看法和意见,教师不可一味的否定学生。教师要关注学生思考问题的过程,千万不要代替学生思考,更不可强加给学生固定的思维模式。
文档为doc格式